If A+B+C=pi then prove that cos3A.cos3B+cos3B.cos3C+cos3C.cos3A=1
Answers
Answered by
0
Answer:
Step-by-step explanation:
A+B+C = pi,
A+B+C = π,
3A+3B+3C = 3π,
cos(3A+3B) = - cos3C,
cos3A.cos3B-sin3A.sin3B = - cos3C,
cos3A.cos3B = sin3A.sin3B - cos3C,
similarly,
cos3B.cos3C = sin3B.sin3C - cos3A,
cos3C.cos3A = sin3C.sin3A - cos3B,
adding the 3 equations,
cos3A.cos3B+cos3B.cos3C+cos3C.cos3A = sin3A.sin3B + sin3B.sin3C + sin3C.sin3A - ( cos3A + cos3B + cos3C )
= 1.
Hope it helps.✔✔✔
Please do mark as Brainliest.
Similar questions