If A+B+C = r and cosA= cosB cosc
show that tan A= TanB + Tanc
Answers
Answered by
0
Step-by-step explanation:
A+B+C=π <=> A = π - (B+C)
cos A = cos (π-(B+C)) = - cos (B+C) =-(cosB cosC -sinB sinC) = sinB sinC - cosB cosC
sinB sinC - cosB cosC = cosB cosC <=> sinB sinC = 2 cosB cosC <=> sinB sinC/cosB cosC =2
<=> tanB tanC=2
tan A = tan (π-(B+C))=- tan (B+C)=
-(tanB+tanC)/(1-tanB tanC) = - (tanB+tanC)/(1–2)
= -(tanB+tanC)/(-1) = tanB + tanC (proven)
Answered by
1
Answer:
Given
A+
B+
C=
π⟹
A=
π−
(B+
C)
And also given
cosA=
cosBcosC
⟹ cos(π− (B+ C))= cosBcosC
⟹ −cosBcosC+ sinBsinC= cosBcosC
⟹ sinBsinC= 2cosBcosC
⟹ tanBtanC= 2
Similar questions