If a+b=c,show that a3+b3+3abc=c3
Answers
Answered by
0
by the identity a^3+b^3+c^3 -3abc
= a+b+c((a^2+b^2+c^2)( ab +bc+ca))
if a^3+b^3+c^3 -3abc = 0
a^3+b^3+c^3 = 3abc
hence it's given that a+b=c
and also a^3+b^3=3abc-c^3
a3+b3+3abc=c3 therefore hence prove
= a+b+c((a^2+b^2+c^2)( ab +bc+ca))
if a^3+b^3+c^3 -3abc = 0
a^3+b^3+c^3 = 3abc
hence it's given that a+b=c
and also a^3+b^3=3abc-c^3
a3+b3+3abc=c3 therefore hence prove
Similar questions