Math, asked by Anonymous, 1 year ago

if A+B+C=\pi then cos^2A+cos^2B+cos^2C= 1-2cosAcosBcosC


Anonymous: dude!!!!!!!!!
Anonymous: how long!??!?!?!!?
sivaprasath: sorry, I'm slow in typing
sivaprasath: & I found a mistake in middle part, So I changed the whole answer./
Anonymous: ohhhhhhhh
Anonymous: ok thanks!

Answers

Answered by sivaprasath
2

Answer:

Step-by-step explanation:

Given :

If,

A + B + C = π,

Prove that :

Cos² A + Cos² B + Cos² C = 1 - 2 Cos A Cos B Cos C

Solution :

We know that,

sin (x + y) = sin x cos y + cos x sin y

cos (x + y) = cos x cos y - sin x sin y

A + B + C = π,

⇒ A + B = π - C,

By taking cos both the sides,

⇒  cos (A + B) = cos (π - C)

⇒ cos A cos B - sin A sin B = - cos C

⇒ cos A cos B + cos C - sin A sin B = 0

⇒ cos A cos B + cos C = sin A sin B

By squaring both the sides,

We get,

⇒ (cos A cos B + cos C)² = (sin A sin B)²

⇒ cos² A cos² B + 2 cos A cos B cos C + cos² C = sin² A sin² B

⇒ cos² A cos² B + 2 cos A cos B cos C + cos² C = (1 - cos² A ) ( 1 - cos² B )

⇒ cos² A cos² B + 2 cos A cos B cos C + cos² C

= 1 - cos² A - cos² B + cos² A cos² B

⇒ cos² A cos² B - cos² A cos² B + cos² A +  cos² B + cos² C - 2 cos A cos B cos C = 0

⇒ cos² A + cos² B + cos² C = 1 - 2 cos A cos B cos C

⇒  LHS = RHS

Hence, proved,.

Similar questions