if a+b+c=π then sin2a+sin2b-sin2c= 4cosAcosBcosC
prove this using only LHS
Answers
Step-by-step explanation:
=> A + B + C = π
=> sin 2A + sin 2B - sin 2C = 4 cos A cos B sin C
From the double angle formula:
sin 2Θ = 2 sin Θ cos Θ
=> sin 2A + sin 2B - sin 2C = 2 sin A cos A + 2 sin B cos B - 2 sin C cos C
Since A + B + C = π ;
> A is a supplement angle of ( B + C )
> B is a supplement angle of ( A + C )
> C is a supplement angle of ( A + B )
sin 2A + sin 2B - sin 2C
... = 2 sin A cos A + 2 sin B cos B - 2 sin C cos C
... = 2 sin ( B + C ) cos A + 2 sin ( A + C ) cos B - 2 sin ( A + B ) cos C
From the Sum of Angle Identity:
sin ( α + ß ) = sin α cos ß + cos α sin ß
sin 2A + sin 2B - sin 2C
... = 2 sin A cos A + 2 sin B cos B - 2 sin C cos C
... = 2 sin ( B + C ) cos A + 2 sin ( A + C ) cos B - 2 sin ( A + B ) cos C
... = 2 ( sin B cos C + cos B sin C ) cos A
..... ..... + 2 ( sin A cos C + cos A sin C ) cos B
..... ..... – 2 ( sin A cos B + cos A sin B ) cos C
... = 2 cos A sin B cos C + 2 cos A cos B sin C
..... ..... + 2 sin A cos B cos C + 2 cos A cos B sin C
..... ..... – 2 sin A cos B cos C – 2 cos A sin B cos C
... = 2 cos A cos B sin C + 2 cos A cos B sin C
... = 4 cos A cos B sin C
HOPE IT HELPS YOU,
THANK YOU. ☺️
Answer:
Step-by-step explanation:
BRAINLIEST BRAINLIEST BRAINLIEST BRAINLIEST BRAINLIEST BRAINLIEST BRAINLIEST BRAINLIEST BRAINLIEST