Math, asked by tanmayvijayraj87, 3 months ago

if a + b + c then the value of (2-a)^3 + (2-b)^3 + (2-c)^3 - 3(2-a)(2-b)(2-c) = ?​

Answers

Answered by Anonymous
1

Step-by-step explanation:

a

3

+b

3

+c

3

−3abc=(a+b+c)(a

2

+b

2

+c

2

−ab−bc−ca)

So, if a+b+c=0, a

3

+b

3

+c

3

=3abc

The given expression can be written as

(2a−b)

3

+(b−2c)

3

+(2c−2a)

3

We can see here that 2a−b+b−2c+2c−2a=0.

Hence, following the above concept

(2a−b)

3

+(b−2c)

3

+(2c−2a)

3

=6(2a−b)(b−2c)(c−a)

Hence, options A, B, C are correct

Answered by ltzSweetAngel
1

a+b+c=6

Therefore (2-a)+(2-b)+(2-c)=0

Now (2-a)^3+(2-b)^3+(2-c)^3–3(2-a)(2-b)(2-c)

={(2-a)+(2-b)+(2-c)}{(2-a)^2+(2-b)^2+(2-c)^2-(2-a)(2-b)-(2-b)(2-c)-(2-c)(2-a)} (since a^3+b^3+c^3–3abc=(a+b+c)(a^2+b^2+c^2-ab-bc-ca)

={2-a+2-b+2-c}{(2-a)^2+(2-b)^2+(2-c)^2–(2-a)(2-b)-(2-b)(2-c)-(2-c)(2-a)}

={6-(a+b+c)}{(2-a)^2+(2-b)^2+(2-c)^2-(2-a)(2-b)-(2-b)(2-c)-(2-c)(2-a)}

={6–6}{(2-a)^2+(2-b)^2+(2-c)^2–(2-a)(2-b)-(2-b)(2-c)-(2-c)(2-a)}

=0×{(2-a)^2+(2-b)^2+(2-c)^2-(2-a)(2-b)-(2-b)(2-c)-(2-c)(2-a)}

=0

Similar questions