If a(b-c)x² + b(c-a)x + c(a-b) is a perfect square, then a,b,c are in?
(i) A.P (ii) G.P (iii) H.P (iv) A.G.P
Answers
Answered by
1
Answer:
Correct option is
C
H.P
Since, a(b−c)x2+b(c−a)xy+c(a−b)y2 is a perfect square.
Therefore the roots of a(b−c)x2+b(c−a)xy+c(a−b)y2=0 are equal.
∴D=[b(c−a)]2−4ac(b−c)(a−b)=0
⇒b2(c−a)2=−4ac[b2−b(a+c)+ac]
⇒b2[(c−a)2+4ac]−4abc(a+c)+4a2c2=0
⇒b2(c+a)2−4abc(a+c)+4a2c2=0
⇒[b(a+c)−2ac]2=0
⇒b(a+c)=2ac
⇒b=a+c2ac
Similar questions