Math, asked by riteshh22, 2 months ago

If a-b is 4 and a+b is 6 find 1) a²+b², 2) ab​

Attachments:

Answers

Answered by Anonymous
96

Answer:

{ \large{ \pmb{ \sf{★ Given... }}}}

a - b = 4 , a + b = 6

{ \large{ \pmb{ \sf{★Find... }}}}

(i) a² + b² (ii) ab

{ \large{ \pmb{ \sf{★Solution... }}}}

First we have to find values of a and b by using elimination method.

a - b = 4____(1)

a + b = 6____(2)

From (1) & (2) :

: a - b + a + b = 4 + 6

: ➙ 2a = 10

: ➙ a = 10/2

: ➙ a = 5

By substituting value of a in eq(1),

a - b = 4

5 - b = 4

- b = 4 - 5

b = 1

Therefore, a = 5 and b = 1

(i) a² + b² :

 :  \:  \: { \to{{5}^{2}  +  {1}^{2} }}  \\ \\  :  \:  \: { \to{25 + 1}} \\   \\ :  \:  \: { \to \bf{ {a}^{2} +  {b}^{2}  =  26}}

(ii) ab :

 \:  :  \:  \: { \to{5 \times 1}} \\  \\  :  \:  \: { \to \bf{ab = 5}}

{ \large{ \pmb{ \sf{★Final  \: Answer... }}}}

(i) a² + b² = 26

(ii) ab = 5

Answered by mrmajnu51
0

Step-by-step explanation:

Answer:

{ \large{ \pmb{ \sf{★ Given... }}}}

★Given...

★Given...

a - b = 4 , a + b = 6

{ \large{ \pmb{ \sf{★Find... }}}}

★Find...

★Find...

(i) a² + b² (ii) ab

{ \large{ \pmb{ \sf{★Solution... }}}}

★Solution...

★Solution...

First we have to find values of a and b by using elimination method.

a - b = 4____(1)

a + b = 6____(2)

From (1) & (2) :

: ➙ a - b + a + b = 4 + 6

: ➙ 2a = 10

: ➙ a = 10/2

: ➙ a = 5

By substituting value of a in eq(1),

➠ a - b = 4

➠ 5 - b = 4

➠ - b = 4 - 5

➠ b = 1

Therefore, a = 5 and b = 1

hope this helps you

Similar questions