Math, asked by manikmitmm2424, 1 year ago

If a + b is equal to 11 and a square + b square is equal to 61 find the value of a cube plus b cube


artistnitesh: Assume a=6 b=5. this satisfies both equation. a+b=6+5=11, and a^2+b^2= 36+25=61. then a^3+b^3= 216+125=341

Answers

Answered by rohitkumargupta
78

\bf HELLO DEAR,<br /><br /><br /> \\  \\ \bf given that:- (a + b) = 11 , (a^{2} + b^{2}) = 61<br /><br /> \\  \\ \bf now,<br /><br /> \\  \\ \bf (a + b)^{2} = (11)^{2}<br /><br /> \\ \\  \bf a^{2} + b^{2} + 2ab = 121<br /><br /> \\  \\ \bf 2ab = 121 - 61<br /><br /> \\  \\ \bf 2ab = 60<br /><br /> \\  \\ \bf ab = 30<br /><br /><br /><br /> \\  \\  \bf \: NOW,<br /><br /> \\  \\ \bf (a^{3} + b^{3}) = (a + b)(a^{2} + b^{2} - ab)<br /><br /> \\  \\ \bf (a^{3} + b^{3}) = (11)(61 - 30)<br /><br /> \\  \\ \bf (a^{3} + b^{3}) = (11)(31)<br /><br /> \\  \\ \bf (a^{3} + b^{3}) = 341<br /><br />



\underline{\bf I  \:  \: HOPE \:  \:  ITS \:  \:  HELP \:   \: YOU \:  \:  DEAR,<br /> \:  \: THANKS}
Answered by abhi569
38
a + b = 11

Square on both sides,

(a + b)² = 11²

a² + b² + 2ab = 121

61 + 2ab = 121

2ab = 121 - 61

2ab = 60 \\  \\ ab =  \frac{60}{2}  \\  \\ ab = 30


Then,


( {a}^{3}  +  {b}^{3} ) = (a + b)( {a}^{2}  - ab +  {b}^{2} ) \\  \\  {a}^{3}  +  {b}^{3}  = (11)(61 - 30) \\  \\  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:   \:  \:   \:  \:  \:  = (11)(31) = 341



I hope this will help you
(-:
Similar questions