Math, asked by nurjahanbegum2478, 11 months ago

if a + b is equal to 45 degrees then the value of 1 + tan ainto 1 + tan​

Answers

Answered by DhanyaDA
6

Given

\sf a+b=45\degree

To find

\sf The \:value \:of\\ \sf (1+tan a)(1+tan b)

Explanation

Consider

a+b=45\degree

Applying tan on both sides

tan(a+b)=tan 45\degree

\underline{tan45\degree=1}

then

 \dfrac{tana + tanb}{1 - tanatanb}  = 1

tana + tanb = 1 - tanatanb

tana + tanb + tanatanb = 1.........(1)

Now consider

(1 + tana)(1 + tanb)

Expanding

1 + tanb + tana + tanatanb

 =  > 1 + 1 \:  \:  \:  \:  \: (from \: (1))

 =  > 2

    {\boxed{ \underline{(1 + tana)(1 + tanb) = 2}}}

Formula used :

\bullet tan(A+B)=\dfrac{tanA+tanB}{1-tanAtanB}

Similar questions