Math, asked by sofiasayyed190, 8 months ago

if a + b is equal to 9 ab is equal to minus 22 to find a minus b and a square minus b square​

Answers

Answered by waqarsd
3

Answer:

13, 117

Step-by-step explanation:

a + b = 9 \\  \\ ab =  - 22 \\  \\   {x}^{2} -  {y}^{2}  = (x + y)(x - y) \\  \\  {(x  + y)}^{2}  =  {x}^{2}  +  {y}^{2}  + 2xy \\  \\  {(x - y)}^{2}  =  {x}^{2}  +  {y}^{2}  - 2xy \\  \\  =  >  {(x - y)}^{2}  =  {(x + y)}^{2}  - 4xy \\  \\  =  >  |x - y| =  \sqrt{ {(x + y)}^{2}  - 4xy}  \\  \\   =  >  |a - b|  =  \sqrt{ {9}^{2}  - 4( - 22)}  \\  \\  =  >  |a - b|  =  \sqrt{81 + 88}  \\  \\  =  >  |a - b|  =  \sqrt{169}  \\  \\  =  >  |a - b|  = 13 \\  \\  {a}^{2}  -  {b}^{2}  = (a + b)(a - b) \\  \\  =  >  {a}^{2}  -  {b}^{2}  = 13 \times 9 \\  \\  =  >  {a}^{2}  -  {b}^{2}  = 117 \\  \\

HOPE IT HELPS

Similar questions