Math, asked by minishelare4781, 1 year ago

If a + b is equal to pi by 4 prove that 1 + 10 into 1 + tan b equal to 2

Answers

Answered by MaheswariS
3

Answer:

(1+tanA)(1+tanB)=2

Step-by-step explanation:

If A+B=\frac{\pi}{4}, prove that

(1+tanA)(1+tanB)=2

Formula used:

tan(A+B)=\frac{tanA+tanB}{1-tanA\:tanB}

Given:

A+B=\frac{\pi}{4}

\implies\:tan(A+B)=tan\frac{\pi}{4}

\implies\:\frac{tanA+tanB}{1-tanA\:tanB}=1

\implies\:tanA+tanB=1-tanA\:tanB

\implies\:tanA+tanB+tanA\:tanB=1

Add 1 on both sides, we get

1+tanA+tanB+tanA\:tanB=1+1

1(1+tanA)+tanB(1+tanA)=2

\implies\:(1+tanA)(1+tanB)=2

Similar questions