Math, asked by Muski8611, 7 days ago

if,a+b=p ,a^(2)+b^(2)=q and a^(3)+b^(3)=r^(3).than show that,p^(3)+2r^(3)=3pq

Answers

Answered by jitendra12iitg
0

Answer:

See explanation

Step-by-step explanation:

Given

          a+b=p,a^2+b^2=q,a^3+b^3=r^3

  • Using  (a+b)^2=a^2+b^2+2ab

          \Rightarrow p^2=q+2ab\\\Rightarrow ab=\frac{1}{2}(p^2-q)  

  • Now using (a+b)^3=a^3+b^3+3ab(a+b)

            \Rightarrow p^3=r^3+3(\frac{1}{2}(p^2-q))p\\\Rightarrow 2p^3=2r^3+3p^3-3pq\\\Rightarrow p^3+2r^3=3pq

Hence proved

Similar questions