If a+b= pi/2, prove that the maximum value of cosacosb 1/2
Answers
Answered by
4
Note:
a+b ≥ a or ≥ b
=> pi/2 ≥ a or ≥b
Now, a+b = pi/2
=> sin a = cosb
=>cosa cosb = sinbcosb = 2sinbcosb /2
= sin 2b /2 ≥ 1/2
Therefore, minimum value is 1/2
a+b ≥ a or ≥ b
=> pi/2 ≥ a or ≥b
Now, a+b = pi/2
=> sin a = cosb
=>cosa cosb = sinbcosb = 2sinbcosb /2
= sin 2b /2 ≥ 1/2
Therefore, minimum value is 1/2
Similar questions
Chemistry,
8 months ago
Computer Science,
8 months ago
Hindi,
8 months ago
Science,
1 year ago
Physics,
1 year ago