Math, asked by prasannapandu66, 1 month ago

if a+b =pie/4,then prove that 1) (1+tana).(1+tanb)=2 2) ( cota-1).(cotb-1)​

Answers

Answered by mathdude500
10

Appropriate Question :-

If

\rm :\longmapsto\:a + b = \dfrac{\pi}{4}

Prove that,

\rm :\longmapsto\:(i) \:  \: (1 + tana)(1 + tanb) = 2

\rm :\longmapsto\:(ii) \:  \: (cota - 1)(cotb - 1) = 2

 \red{\large\underline{\sf{Solution-i}}}

Given that,

\rm :\longmapsto\:a + b = \dfrac{\pi}{4}

So,

\rm :\longmapsto\:tan(a + b) = tan\bigg[\dfrac{\pi}{4} \bigg]

\rm :\longmapsto\:\dfrac{tana + tanb}{1 - tana \: tanb}  = 1

\rm :\longmapsto\:tana + tanb = 1 - tana \: tanb

\rm :\longmapsto\:tana + tanb +  tana \: tanb = 1

Adding 1 on both sides, we get

\rm :\longmapsto\:1 + tana + tanb +  tana \: tanb = 1 + 1

\rm :\longmapsto\:(1 + tana) + tanb(1 + tana) = 2

\rm :\longmapsto\:(1 + tana)(1 + tanb) = 2

Hence, Proved

 \red{\large\underline{\sf{Solution-ii}}}

Given that,

\rm :\longmapsto\:a + b = \dfrac{\pi}{4}

So,

\rm :\longmapsto\:cot(a + b) = cot\bigg[\dfrac{\pi}{4} \bigg]

\rm :\longmapsto\:\dfrac{cotacotb - 1}{cotb + cota}  = 1

\rm :\longmapsto\:cotacotb - 1 = cotb + cota

\rm :\longmapsto\:cotacotb - cotb  -  cota = 1

Adding 1 on both sides, we get

\rm :\longmapsto\:cotacotb - cotb  -  cota + 1 = 1 + 1

\rm :\longmapsto\:cotb(cota - 1) - 1(cota - 1) = 2

\rm :\longmapsto\:(cota - 1)(cotb - 1) = 2

Hence, Proved

Additional Information :-

\boxed{ \tt{ \: sin(x + y) = sinxcosy + sinycosx}}

\boxed{ \tt{ \: sin(x  -  y) = sinxcosy  -  sinycosx}}

\boxed{ \tt{ \: cos(x + y) = cosxcosy - sinxsiny}}

\boxed{ \tt{ \: cos(x  -  y) = cosxcosy  +  sinxsiny}}

\boxed{ \tt{ \:tan(x + y) = \dfrac{tanx + tany}{1 - tanxtany}}}

\boxed{ \tt{ \:tan(x  -  y) = \dfrac{tanx  -  tany}{1  +  tanxtany}}}

\boxed{ \tt{ \: cot(x + y) =  \frac{cotxcoty - 1}{coty + cotx}}}

\boxed{ \tt{ \: cot(x  -  y) =  \frac{cotxcoty  +  1}{coty  -  cotx}}}

Answered by swanhayden7
0

Answer:

Given that, \\ </p><p></p><p>\rm :\longmapsto\:a + b = \dfrac{\pi}{4} \\ </p><p></p><p>So,</p><p></p><p>\rm :\longmapsto\:tan(a + b) = tan\bigg[\dfrac{\pi}{4} \bigg] \\ </p><p></p><p>\rm :\longmapsto\:\dfrac{tana + tanb}{1 - tana \: tanb} = 1 \\ </p><p></p><p>\rm :\longmapsto\:tana + tanb = 1 - tana \: tanb</p><p> \\ </p><p>\rm :\longmapsto\:tana + tanb + tana \: tanb = 1 \\ </p><p></p><p>Adding 1 on both sides, we get \\ </p><p></p><p>\rm :\longmapsto\:1 + tana + tanb + tana \: tanb = 1 +1 \\ </p><p></p><p>\rm :\longmapsto\:(1 + tana) + tanb(1 + tana) = 2 \\ </p><p></p><p>\rm :\longmapsto\:(1 + tana)(1 + tanb) = 2 \\ </p><p></p><p>Hence, Proved</p><p></p><p>

Similar questions