if a + b = root 5 and a - b= root 3 then the value of (a2 + b2)
Answers
Answered by
2
Answer:
4
Step-by-step explanation:
Given :
a + b = √5
a - b = √3
Note that : a² + b²
= > a² + ab + b² + ab - 2 ab
= > ( a + b )² - 2 ab
= > ( a + b )² - 4 ab / 2
= > ( a + b )² - [ a² + b² + 2 ab + 2 ab - a² - b² ] / 2
= > ( a + b )² - [ ( a + b )² - ( a - b )² ] / 2
Now put the values & enjoy :
= > ( √5 )² - [ ( √5 )² - ( √3 )² ] / 2
= > 5 - [ 5 - 3 ] / 2
= > 5 - 2/2
= > 5 - 1
= > 4
Answered by
0
Answer:
Step-by-step explanation:
|A|=2
|B|=5
|A×B|=8
We know that ,
|A×B|=|A||B|sinθ
So, 2×5×sinθ=8
⟹sinθ=45
⟹cosθ=35
To evaluate:
A⋅B=|A||B|cosθ
⟹A⋅B=2×5×35
⟹A⋅B=6
Similar questions