Math, asked by jeannie1818, 1 year ago

If a + b tan theta = sec theta and b-a tan theta = 3 sec theta , then
find the value of a^2 + b^2.​

Answers

Answered by syedakram2002
8

Answer:

a^2+b^2=10

Step-by-step explanation:

easy question,

a+btanθ=secθ       .....................................(1)

b-atanθ=3secθ     ......................................(2)

squaring both (1) and (2)

we get,

a^{2} +b^{2} tan^2θ+2abtanθ=sec^2θ ....................(3)

b^{2} +a^2tan^2θ-2abtanθ=9sec^2θ   ....................(4)

now adding both (3) & (4)

we get..

a^2+b^2+tan^2θ(a^2+b^2)=10sec^2θ

take a^2+b^2 commonly outside..

now we have..

a^2+b^2(1+tan^2θ)=10sec^2θ

_________________________

Identity :

sec^2θ -tan^2θ=1

sec^2θ=1+tan^2θ

_________________________

now,

(a^2+b^2)(sec^2θ)=10sec^2θ

the equation hence becomes,

a^2+b^2=10

that's the answer...

Similar questions