Math, asked by vanshbharara67, 11 months ago

If a,b,x, y and z are numbers greater than 1 and a^x=b^y=(ab)^z and 1/x + 1/y = k/z then the value of k is :

Answers

Answered by pulakmath007
3

SOLUTION

GIVEN

If a,b,x, y and z are numbers greater than 1 and

 \displaystyle \sf{ {a}^{x} =  {b}^{y}  =  {(ab)}^{z} \:  \: and \:  \frac{1}{x} +  \frac{1}{y}  =  \frac{k}{z}    }

TO DETERMINE

The value of k

EVALUATION

Let

 \displaystyle \sf{ {a}^{x} =  {b}^{y}  =  {(ab)}^{z}  = p }

So that we get

 \displaystyle \sf{ a =  {p}^{ \frac{1}{x} } }

 \displaystyle \sf{ b =  {p}^{ \frac{1}{y} } }

 \displaystyle \sf{ ab =  {p}^{ \frac{1}{z} } }

Now

 \displaystyle \sf{ a  \times b = ab }

 \displaystyle \sf{  \implies \:  {p}^{ \frac{1}{x} } \times   {p}^{ \frac{1}{y} }  =  { p}^{ \frac{1}{z} }   }

 \displaystyle \sf{  \implies \:  {p}^{ \frac{1}{x} +  \frac{1}{y}  } =  { p}^{ \frac{1}{z} }   }

 \displaystyle \sf{  \implies \:   \frac{1}{x} +  \frac{1}{y}   =  \frac{1}{z} }

Now Comparing with

 \displaystyle \sf{  \implies \:   \frac{1}{x} +  \frac{1}{y}   =  \frac{k}{z} }

We get k = 1

FINAL ANSWER

Hence the required value of k = 1

━━━━━━━━━━━━━━━━

Learn more from Brainly :-

1. If x/5 = y/3 then 3x + 5y / … fill in the blanks by choosing correct answer

https://brainly.in/question/39275501

2. if 7m + 4n = 3m + 2n then m/n = ?

https://brainly.in/question/39272649

Similar questions