If a:b=x:y=m:n then prove that
byn{(a+b)/b+(x+y)/y+(m+n)/n}³=27(a+b)(x+y)(m+n)
please solve this.. anyone
don't give wrong answer or don't spam..
it's very urgent.
Answers
Answered by
1
Answer:
a:b=x:y=m:n=k (let)
So, a=bk, x=yk, m=nk
(a+b)/b=(bk+b)/b=b(k+1)/b=k+1
(x+y)/y=(yk+y)/y=y(k+1)/y=k+1
(m+n)/n=(mk+n)/n=n(k+1)/n=k+1
adding the above three we get,
a+b)/b+(x+y)/y+(m+n)/n=3(k+1)
cubing we get,
{a+b)/b+(x+y)/y+(m+n)/n}=27(k+1)^3
LHS = byn*27(k+1)^3
a+b=bk+b=b(k+1)
x+y=yk+y=y(k+1)
m+n=nk+n=n(k+1)
Multiplying we get,
(a+b)(x+y)(m+n)=byn(k+1)^3
Hence,
RHS= 27byn(k+1)^3=LHS (Proved)
Similar questions