Math, asked by ashvitha123, 1 month ago


If (a? +b)x2 +2 (ab+bd)x +c+d2 = 0 has no real roots, then​

Answers

Answered by IzAnju99
5

Given equation is

\bf \: x2 ( {a}^{2} +   {b}^{2} ) + 2x(ac + bd) + ( {c}^{2}+ {d}^{2}) = 0

The equation will have no real roots only if Discriminant (D) < 0

 \bf⇒ b2  \: –  \: 4ac &lt; 0

\bf⇒ b2  \: –  \: 4ac

\bf ⇒ [2(ac + bd)]2  \: –  \: 4 ( {a}^{2}+ {b}^{2}) ( {c}^{2} +  {d}^{2})

\bf ⇒ 4( {a \: c \:  + b \: d}^{2}) \: – 4( {a}^{2}  \: {c}^{2}   +  {a}^{2}   \: {d}^{2} +  {b}^{2} {c}^{2} +  {b}^{2}  {d}^{2})

\bf ⇒ 4( {a}^{2}  {c}^{2} +  {b}^{2}  {d}^{2}  + 2 \: abcd) – 4( {a}^{2}  {c}^{2} +  {a}^{2}  {d}^{2}  + {b}^{2}  {c}^{2}   +  {b}^{2}  {d}^{2})</p><p>

 \bf ⇒ 4 \:  {a}^{2}  {c}^{2}  + 4 \:  {b}^{2} {d}^{2}  + 8 \: abcd – 4 \:  {a}^{2}  {c}^{2}  – 4 \:  {a}^{2}  {d}^{2} –  \: 4 \:  {b}^{2}  {c}^{2} \:  – 4 \:  {b}^{2}  {d}^{2}</p><p>

 \bf ⇒ – 4  \: {a}^{2} {d}^{2} \:   – \:  4 {b \:}^{2}  {c}^{2} + 8 \: abcd

 \bf – 4 [ {a}^{2} {d}^{2} +  {b}^{2} {c}^{2} – 2 \: abcd]

 \bf – 4[( {a \: d \:  -  \: b \: c)}^{2} ]

For ad ≠ bc

 \bf D = – \:  4 × [Value  \: of ( {a \: d \:  -  \: b \: c)}^{2}]

D always remain negative

So , D < 0

The given equation has no real roots.

︎︎︎

︎︎︎

︎︎︎

︎︎︎

Similar questions