If (a-b)x2 +(b-c)x + c-a=0
have equal
roots then show 2a = b+c.
Answers
Answered by
1
Answer:
don't know noooooooooooooooo
Step-by-step explanation:
Noooooooooooooooooooooo
Answered by
0
Answer:
given
d = 0 (equal roots)
to prove -- 2a = b+c
proof --
d= 0 (given)
d = (b-c)^2 -4(a-b)(c-a)
0 = b^2 +c^2 -2bc -4ac +4a^2 +4bc - 4 ab
0 = (-2a)^2 +b^2 +c^2 2(-2a)b +2bc +2(-2a)c
by using formula {(a+b+c )^2= a^2+b^2+c^2+2ab +2bc +2ac }
0 = (-2a + b + c )^2
0 = (-2a + b + c )(-2a + b + c )
0 ×(-2a + b + c ). = (-2a + b + c )
0 = -2a + b + c
2a = b+c
hence proved
hope it will help you
Similar questions