If a, b,y are the zeroes of the cubic polynomial 2x3 - 3x2 + 6x + 1 then find the value of
4α²+ 4β² + 4gama²
Answers
Answered by
0
Answer:
-15
Step-by-step explanation:
(a+b+c)^2=a^2+b^2+c^2+2(ab+bc+ca)...(i)
Given equation:
2x3 - 3x2 + 6x + 1 (a,b,c--are the roots)
Comparing the equation with
Ax3 +Bx2 +Cx+D,we get,
A=2
B=-3
C=6
D=1
using the formula of roots--(here)
(a+b+c)=-B/A= -(-3)/2=3/2
(ab+bc+ca)=C/A=6/2=3
putting this values in equation (i):
(3/2)^2=a^2+b^2+c^2+2(3)
9/4=a^2+b^2+c^2+6
a^2+b^2+c^2=(9/4)-6= -15/4....(ii)
WE NEED:
4a^2+4b^2+4c^2
=4(a^2+b^2+c^2)
Putting value from equation (ii) we get:
=4(-15/4)= -15(ANS)
Similar questions