Math, asked by sagaraulakh8, 2 months ago

if a,b,y be zeros of the polynomial 6x^3+3x^2-5x+1 , then find the value of a^-1+b^-1+y^-1 ?​

Answers

Answered by ImperialGladiator
10

Answer:

5

Explanation:

Given polynomial,

⇒ 6x³ + 3x² - 5x + 1

On comapring with ax³ + bx² + cx + d

  • a = 6
  • b = 3
  • c = -5
  • d = -1

Then,

  • α + β + γ = -b/a = -3/6 = -½
  • αβ + βγ + αγ = c/a = -5/6
  • αβγ = d/a = -1/6

Solving for :-

⇒ 1/α + 1/β + 1/γ

⇒ αβ + βγ + αγ/αβγ

Substituting the values,

⇒ (-5/6)/(-1/6)

⇒ -5/6 × -6/1

⇒ 5

Required answer: 5

_________________________

Answered by Vikramjeeth
68

*Question:-

if a,b,y be zeros of the polynomial 6x^3+3x^2-5x+1 , then find the value of a^-1+b^-1+y^-1 ?

*Answer:-

 \alpha , \beta , \gamma

↑↑These are the zeros of polynomial

6x³ + 3x² - 5x + 1

 =  >  \alpha  +  \beta  +  \gamma  =  \frac{ - b}{a}  =  \frac{ - 3}{6}  \\

 =  >  \alpha  +  \beta  +  \gamma  =  \frac{ - 1}{2}  \\

 =  >  \alpha  \beta  +  \beta  \gamma  +  \gamma  \alpha  =  \frac{c}{a}  =  \frac{ - 5}{6}  \\

 =  >  \alpha  \beta  \gamma  =  \frac{ - d}{a}  =  \frac{ - 1}{6}  \\

 =  >  \frac{1}{ \alpha } +  \frac{1}{ \beta } +  \frac{1}{ \gamma } =  \frac{ \alpha  \beta  +  \beta  \gamma  +  \alpha  \gamma }{ \alpha  \beta  \gamma }   \\

 =  >  \frac{ -5/6}{ - 1/6} =  \frac{ - 5}{6} \times  \frac{6}{ - 1}  \\

Hence,

  =  > { \alpha }^{ - 1} +  { \beta }^{ - 1}  +  { \gamma }^{ - 1}  = 5

So the required answer is 5

Hope it helps you.

__________________________________

Similar questions