Math, asked by srinivinodh8, 1 day ago

if a=b2x, b=c2y, c= a2z p.t xyz= 1/8

Answers

Answered by mathdude500
13

Appropriate Question :-

\rm \: If \: a =  {b}^{2x}, \: b =  =  {c}^{2y},  \: c =  {a}^{2z}, \:prove \: that \: xyz = \dfrac{1}{8} \\

\large\underline{\sf{Solution-}}

Given that,

\rm \: a =  {b}^{2x} -  -  -  - (1) \\

\rm \: b =  {c}^{2y} -  -  -  - (2) \\

\rm \: c =  {a}^{2z} -  -  -  - (3) \\

On substituting the value of a from equation (1) in (3), we get

\rm \: c =  {( {b}^{2x})}^{2z} \\

We know,

\boxed{\sf{  \:\rm \:  {( {a}^{x} )}^{y} =  {a}^{xy}  \: }} \\

So, using this identity, we get

\rm \: c =  {b}^{4xz} \\

On substituting the value of b from equation (2), we get

\rm \: c =  {( {c}^{2y})}^{4xz} \\

\rm \: c =  {c}^{8xyz} \\

can be rewritten as

\rm \:  {c}^{1}  =  {c}^{8xyz} \\

\rm\implies \:\rm \: 8xyz = 1

\rm\implies \:\rm \: xyz = \dfrac{1}{8}  \\

Hence, Proved

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

Additional Information

\boxed{\sf{  \: {a}^{x} \times  {a}^{y} =  {a}^{x + y} \: }} \\

\boxed{\sf{  \: {a}^{x}  \div   {a}^{y} =  {a}^{x  -  y} \: }} \\

\boxed{\sf{  \: {a}^{0} = 1 \: }} \\

\boxed{\sf{  \: {a}^{ - x} =  \frac{1}{ {a}^{x} }  \: }} \\

\boxed{\sf{  \: {a}^{x} \times  {b}^{x} =  {(a \times b)}^{x} \: }} \\

\boxed{\sf{  \: {a}^{x} =  {a}^{y} \:  \: \rm\implies \:x = y \: }} \\

Answered by maheshtalpada412
1

Step-by-step explanation:

Solution.

Given \tt a=b^{2 x} \ldots(i) \qquad b=c^{2 y} \qquad \ldots (ii) \qquad c=a^{2 z}\qquad \ldots (iii) \qquad Substituting the value of b from (ii) in (i), we get

 \tt \: \[ a=\left(c^{2 y}\right)^{2 x}=c^{4 x y} \]

Substituting the value of c from (iii) in (iv), we get

\[ \begin{aligned} \tt a & \tt=\left(a^{2 x}\right)^{4 x y}=a^{8 x y z}  \\   \Rightarrow &  \tt \: a^{1} =a^{8 x y z}  \Rightarrow  \tt1=8 x y z \\ \Rightarrow & \tt x y z =\frac{1}{8} \end{aligned} \]

(Assume \sf a>0, a \neq 1 )

Similar questions