Math, asked by haseenashaik695, 5 months ago

if A,Bate the roots of 2x²-3x+5=0then find A²+B²​

Answers

Answered by vasugupta230804
0

Step-by-step explanation:

sum of roots = A+B =

  \frac{ - b}{a}

= 3/2

AB = Product of roots = c/a = 5/2

 {a}^{2}  +  {b}^{2}  =  {(a + b)}^{2}  - 2ab \\  =  {( \frac{3}{2}) }^{2}  - 2 \times  \frac{5}{2}  \\  =  \frac{9}{4}  - 5 \\  =  \frac{ - 11}{4}

Answered by mathdude500
0

Question :-

  • If A, B are the roots of 2x²- 3x + 5 = 0, then find A²+B².

Answer

Given :-

  • A and B are the rots of 2x²- 3x + 5 = 0

To Find :-

  • The value of A²+B².

Concept used :-

  • If α,β be two zeroes of the quadratic equation ax² + bx + c = 0, then

\bf \:Sum  \: of  \: zeroes =  \alpha  +  \beta  =   - \dfrac{b}{a}

\bf \:Product  \: of  \: zeroes  =  \alpha  \beta  =  \dfrac{c}{a}

\bf \: { \alpha }^{2}  +  { \beta }^{2}  =  {( \alpha  +  \beta )}^{2}  - 2 \alpha  \beta

Solution :-

Since A and B are zeroes of 2x²- 3x + 5 = 0, then

\bf\implies \:A + B =  - \dfrac{( - 3)}{2} =  \dfrac{3}{2}

\bf\implies \:AB =  \dfrac{5}{2}

Consider, A² + B²

\bf\implies \:A²+B² =  {(A + B)}^{2}  - 2AB

\bf\implies \:A²+B² =  {( \dfrac{3}{2} )}^{2}  - 2 \times  \dfrac{5}{2}

\bf\implies \:A²+B² =  \dfrac{9}{4}  - 5

\bf\implies \:A²+B² =  -  \dfrac{11}{4}

___________________________________________

Similar questions