If A be the area of a right triangle and ‘a’ one the sides containing the right angle, prove that the length of the altitude on the hypotenuse is 2Aa /√a4+4A2
Answers
Answered by
3
Let us consider
Area of the right angle = A
One side of the right angle = b
Area of the triangle A = 1/2 × b × h
h = 2A/b
Another side of the right-angled triangle containing the right angle (h) = 2A/b
According to Pythagoras theorem, the hypotenuse of the right-angled triangle is,
(Hypotenuse)2=(Base)2+(Height)2
(Hypotenuse)2 = (b)2 + (2A / b)2
⇒ (Hypotenuse)2 = b2 + (4A2 / b2)
⇒ Hypotenuse = √[b2 + (4A2 / b2)
⇒ Hypotenuse = √[(b4 + 4A2) / b2
⇒ Hypotenuse = 1/b √[(b4 + 4A2)
According to Pythagoras theorem, area of the right angle is
A = 1/2 × 1/b √[(b4 + 4A2)] × altitude on hypotenuse (h)
⇒ 2A = 1/b √[(b4 + 4A2)] × h
⇒ 2Ab = √[(b4 + 4A2)] × h
⇒ h = 2Ab/√(b4 + 4A2)
Similar questions