If a be the radius of circle which touch x-axis at origin then find equation of circle
Answers
Answered by
0
Answer:
X² + Y² + a - 2.a.(Xcosx-Ysinx) = a²
Step-by-step explanation:
Refer to the attachment for diagram.
According to the diagram,
distance of centre from y axis = a cosx
distance of centre from x axis = a sinx
Thus, coordinates of centre is, (a cosx, a sinx)
Now, equation of circle =
(X-a)² + (Y-b)² = r²
(X- a cosx)² + (Y-a sinx)² = a²
X² + a²cos²x - 2.X.acosx + Y² + a²sin²x - 2.Y.asinx = a²
X² + Y² + a.( sin²x + cos²x ) - 2.a.(Xcosx-Ysinx) = a²
X² + Y² + a - 2.a.(Xcosx-Ysinx) = a²
I hope this is the answer. If u want a more simplified answer, just continue with the above last step..
I HOPE U UNDERSTOOD !!
Attachments:
Similar questions