Math, asked by vipin111120, 7 months ago

If 'a' be the sum of the odd terms and 'b'

the sum of the even terms of the expansion

of (1 + x)

n, then (1 – x2)

n =

(A) a2 – b2 (B) a2 + b2

(C) b2 – a2 (D) None of these​

Answers

Answered by Skanda09
0

Answer:

Step-by-step explanation:

Sum of odd terms in the expansion of (1+x)  

n

 will be 2  

n−1

 ...(i)

Now  

(1−x  

2

)  

n

=  

n

C  

0

​  

−  

n

C  

1

​  

x  

2

+  

n

C  

2

​  

x  

4

+...(−1)  

n

 

n

C  

n

​  

x  

2n

 ...(n)

(1+x  

2

)  

n

=  

n

C  

0

​  

+  

n

C  

1

​  

x  

2

+  

n

C  

2

​  

x  

4

+...  

n

C  

n

​  

x  

2n

 ...(m)

Subtracting n from m, we get  

(1+x  

2

)  

n

−(1−x  

2

)  

n

=2[  

n

C  

1

​  

x  

2

+  

n

C  

3

​  

x  

6

+...]

Now let x=1.

Hence we get  

2  

n

−0=2[  

n

C  

1

​  

+  

n

C  

3

​  

+...]

Or  

n

C  

1

​  

+  

n

C  

3

​  

x  

2

+  

n

C  

5

​  

+...=2  

n−1

Sum of odd terms in the expansion of (1+x)  

n

 will be 2  

n−1

 ...(i)

Now  

(1−x  

2

)  

n

=  

n

C  

0

​  

−  

n

C  

1

​  

x  

2

+  

n

C  

2

​  

x  

4

+...(−1)  

n

 

n

C  

n

​  

x  

2n

 ...(n)

(1+x  

2

)  

n

=  

n

C  

0

​  

+  

n

C  

1

​  

x  

2

+  

n

C  

2

​  

x  

4

+...  

n

C  

n

​  

x  

2n

 ...(m)

Subtracting n from m, we get  

(1+x  

2

)  

n

−(1−x  

2

)  

n

=2[  

n

C  

1

​  

x  

2

+  

n

C  

3

​  

x  

6

+...]

Now let x=1.

Hence we get  

2  

n

−0=2[  

n

C  

1

​  

+  

n

C  

3

​  

+...]

Or  

n

C  

1

​  

+  

n

C  

3

​  

x  

2

+  

n

C  

5

​  

+...=2  

n−1

Similar questions