Math, asked by beddalateja271, 9 months ago

If a-bi/a+bi=1+i/1-i then,prove a+b=0

Answers

Answered by MaheswariS
0

Answer:

a+b=0

Step-by-step explanation:

\textsf{Given:}

\displaystyle\mathsf{\frac{a-ib}{a+ib}=\frac{1+i}{1-i}}

\displaystyle\mathsf{\frac{a-ib}{a+ib}=\frac{1+i}{1-i}}

\implies\mathsf{(a-ib)(1-i)=(a+ib)(1+i)}

\implies\mathsf{a-ai-ib+i^2b=a+ai+ib+i^2b}

\textsf{Using,\;\;$i^2=-1$}

\implies\mathsf{(a-b)-i(a+b)=(a-b)+i(a+b)}

\textsf{Equating corresponding real and imaginary parts on both sides, we get}

\implies\mathsf{-(a+b)=a+b}

\implies\mathsf{-2(a+b)=0}

\implies\boxed{\mathsf{a+b=0}}

Similar questions