If a+bi=c+i/c-i, prove that a squar +b square=1 and b/a=2c/c square -1
Answers
Answer:
Given:
- a + bi = (c + i) / (c - i)
Solution:
》a + bi = (c + i) / (c - i)...(1) (Given)
》a - bi = (c - i) / (c + i)...(2) (Conjugate pair)
Multiply equation (1) by equation (2), we get
》a² - b²i² = 1
》a² + b² = 1
Divide equation (1) from equation (2), we get
》(a + bi) / (a - bi) = (c + i)² / (c - i)²
By componendo and dividendo
》[(a + bi) + (a - bi)] / [(a + bi) - (a - bi)]
⠀⠀⠀= [(c + i)² + (c - i)²] / [(c + i)² - (c - i)²]
》2a/2bi = (2c² + 2i²) / (4ci)
》2a/2b = 2 (c² - 1) / 4c
》a/b = (c² - 1) / 2c
By invertendo, we get
》b/a = 2c / (c² - 1)
__________________________________
Note;
- (a + b)² + (a - b)² = 2a² + 2 b²
- (a + b)² - (a - b)² = 4ab
Yes, we can prove that a² + b² = 1 and b/a = 2c/c²- 1.
Given,
a + bi = c + i/c - i
To Find,
We have to prove that a² + b² = 1 and b/a = 2c/c²- 1.
Solution,
We have, a + bi = c + i/c - i ------------------------------------(1)
On conjugating (1),
⇒ a - bi = c - i/c + i ------------------------------------(2)
On multiplying (1) and (2), we get,
⇒ a² - b²i² = 1
⇒ a² + b² = 1 (∵ i² = -1)
On dividing (1) and (2), we get,
⇒ a + bi/a - bi = (c + i)²/(c - i)²
Using componendo and dividendo, we get,
⇒ a + bi + a - bi/a + bi - a - bi = (c + i)² + (c - i)²/(c + i)² - (c - i)²
⇒ 2a/2bi = 2c² + 2i²/4ci
⇒ a/b = c² - 1/2c
⇒ b/a = 2c/c² - 1
Hence proved, a² + b² = 1 and b/a = 2c/c²- 1.
#SPJ3