Physics, asked by abiblessy1981, 10 months ago

If a body starts from rest and accelerates to a speed of 5 m/s in 1 second, then the distance travelled by it is​

Answers

Answered by Anonymous
103

Answer

Given -

\bf u = 0 m/s

\bf v = 5 m/s

\bf t = 1 sec

where

\longrightarrowu is initial velocity.

\longrightarrowv is final velocity.

\longrightarrowt is time taken.

━━━━━━━━━━━━

To find -

Distance travelled \longrightarrow s

━━━━━━━━━━━━

Solution -

By substituting the value in 1st equation of motion , first we will find acceleration. After finding acceleration we can substitute the values in both 2nd and 3rd equation of motion.

\longrightarrow\bf u = 0 m/s

\longrightarrow\bf v = 5 m/s

\longrightarrow\bf t = 1 sec

Substituting the value in 1st equation of motion -

\implies\bf v = u + at

\implies\bf 5 = 0 + a

\implies\bf a = 5m/s^2

Acceleration of particle is \bf 5 m/s^2

━━━━━━━━━━━━

\longrightarrow\bf u = 0 m/s

\longrightarrow\bf t = 1 sec

\longrightarrow\bf a = 5 m/s^2

Substituting the value in 2nd equation of motion -

\implies\bf s = ut + 1/2 at^2

\implies\bf s = 0 + 1/2 \times 5 \times 1^2

\implies\bf s = 1/2 \times 5

\implies\bf s = 2.5 m

Distance travelled in 1sec is 2.5 m

━━━━━━━━━━━━

Answered by Anonymous
3

 \huge\rm { _!! Question !_!  }

If a body starts from rest and accelerates to a speed of 5 m/s in 1 second, then the distance travelled by it is?

 \huge\rm { _!! Solution !_!  }

 {\underline {\underline  {\rm {\red { Given: }}}}}

  •  \rm\pink { (u ) Initial \: velocity = 0m/s }

 \rm { (as \: it \: started \: from \: rest .) }

  •  \rm\pink { (v ) Final \: velocity = 5m/s }

  •  \rm\pink { (t ) time \: taken = 1s }

 {\underline {\underline  {\rm {\red { To \: find : }}}}}

  •  \rm\blue { ( s ) total \: distance \: travelled }

 {\underline {\underline  {\rm {\red { Calculation : }}}}}

We can find total distance by 2nd equation of motion-

 \rm\red { \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  s = ut + \dfrac{1}{2}a{t}^{2} }

Where,

  •  \rm { s = distance ( need \: to \: find )}

  •  \rm { u = initial \: velocity ( 0m/s )}

  •  \rm { v = final \: velocity ( 5m/s )}

  •  \rm { a = acceleration}

  •  \rm { t =  time ( 1s )}

But there is not acceleration given ,so we need to find acceleration first,

 \rm{ \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  a = \dfrac{v-u}{t} }

 \rm{ \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  a = \dfrac{5-0}{1} }

 \rm{ \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  a = 5m/s }

___ ___ ___ ___

Now we have,

  •  \rm\purple{ (u ) Initial \: velocity = 0m/s }

  •  \rm\purple { (v ) Final \: velocity = 5m/s }

  •  \rm\purple { (t ) time \: taken = 1s }

  •  \rm\purple { (a ) acceleration = 5m/s }

 \rm\blue {   \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  s = ut + \dfrac{1}{2}a{t}^{2} }

 \rm {   \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \leadsto s =( 0 \times 1 )+ \dfrac{1}{2} \times 5 \times {1}^{2} }

 \rm {  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \leadsto s = \dfrac{5}{2} \times 1 }

 \rm\orange {   \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \leadsto s = \cancel { \dfrac{5}{2}} = 2.5m }

Therefore, distance travelled by it is 2.5m.

__________________________

 \huge\rm { _!! Additional \: information !_!  }

Three equations of motion:

  •  {\underline {\underline {\rm {\red {  v = u + at }}}}}

  •  {\underline {\underline {\rm {\red {  s =  ut + \dfrac{1}{2}a{t}^{2} }}}}}

  •  {\underline {\underline {\rm {\red {  2as = {v}^{2} - {u}^{2} }}}}}

Where,

  • v is final velocity
  • u is intial velocity
  • a is acceleration
  • t is time
  • s is distance/displacement

To solve problems related on motion we should remember that -

  • If a body starts from rest or stationary position then  \rm { u = 0 }

  • If a body comes rest ( it stops ) or breaks are applied then  \rm { v= 0 }

__________________________

Similar questions