Math, asked by vicky2563, 1 year ago

if A-Broot3=2-root3/2+root3 then find value of a and b​

Answers

Answered by sivaprasath
2

Answer:

Step-by-step explanation:

Given :

A-B\sqrt{3} = \frac{2-\sqrt{3} }{2+\sqrt{3} }

To Find :

The values of A & B,.

______________________

To find A & B,

initially, we shall simplify the given RHS (Right-Hand-Side), by taking conjugate \frac{2-\sqrt{3} }{2+\sqrt{3} }  = \frac{2-\sqrt{3} }{2+\sqrt{3} } X \frac{2-\sqrt{3} }{2-\sqrt{3} } = \frac{(2-\sqrt{3})^2 }{(2+\sqrt{3})(2-\sqrt{3})  }

Applying the algebraic formulas,

( a - b )² = a² - 2ab + b²

and,

( a + b )( a - b ) = a² - b²

where a = 2 & b = √3

\frac{(2)^2 - 2(2)(\sqrt{3}) + (\sqrt{3})^2  }{2^2 - (\sqrt{3})^2 }

\frac{4 + 3 - 4\sqrt{3} }{4 - 3}

\frac{7 - 4\sqrt{3} }{1}=7-4\sqrt{3}

Hence,

\frac{2-\sqrt{3} }{2+ \sqrt{3} } = 7 - 4\sqrt{3}

A - B\sqrt{3} = 7 - 4\sqrt{3}

A = 7,

-B\sqrt{3} = -4\sqrt{3}

Dividing both the sides by -\sqrt{3} ,

We get,

\frac{-B\sqrt{3} }{-\sqrt{3} } = \frac{-4\sqrt{3} }{-\sqrt{3} }

B = 4

∴ A = 7,

∴ B = 4

______________________________

              Hope it Helps!!

⇒ Brainliest it(if you like)

Answered by Anonymous
3
 \huge {\bold {\red {s0lUtion}}}

➖ ➖ ➖ ➖ ➖ ➖ ➖ ➖ ➖
a = 7
b = 4
➖➖➖➖➖➖➖➖

 \bold \blue {{HOPE \: YOU \: GOT \: IT}}
Attachments:

Anonymous: ... loved to help you.. thanks
kingArsh07: hi
kingArsh07: hlo
kingArsh07: alphana
Similar questions