Science, asked by aashikacharya007, 4 months ago

If a bullet of mass of mass 50 gram is moving with a velocity of 200
km/h, calculate the kinetic energy stored in it.

Answers

Answered by Mysterioushine
1

Given :

  • Mass of the bullet = 50 g

  • Velocity of the bullet = 200 km/h

To find :

  • Kinetic energy stored in the bullet

Solution :

Kinetic energy of a body is given by ,

 \dag \boxed {\rm{KE =   \: \frac{1}{2}m {v}^{2}  }}

Where ,

  • m is mass of the body
  • v is velocity of the body

The relation between kg and g is

 :  \implies {\rm{1kg= 10000   \: g}} \\  \\   : \implies \rm \: 1g =  \frac{1}{1000}  \: kg \\  \\   : \implies  \boxed {\rm{ 1g = 10 {}^{ - 3} \: kg }}

Then , 50 g = 50 × 10⁻³ kg = 5 × 10⁻² kg

Now , the relation between m/s and km/hr is ,

 \boxed {\rm{1km. {hr}^{ - 1} = 0.278 \: m {s}^{ - 1}  }}

Then , 200 km/hr = 200 × 0.278 m/s = 55.6 m/s

We have ,

  • m = 50 g = 5 × 10⁻² kg
  • v = 200 km/hr = 55.6 m/s

 :  \implies \rm \: KE =  \dfrac{1}{2}(5 \times  {10}^{ - 2} \: kg)(55.6 \: m {s}^{ - 1} ) {}^{2}  \\  \\ :   \implies   \rm \: KE =   \frac{1}{2} (5\times  {10}^{ - 2} \: kg)({ 3091.36}  \: m {}^{2}  {s}^{ - 2}  ) \\  \\  :  \implies \rm \: KE =  \frac{1}{2}  (15456.8 \times  {10}^{ - 2} \: kgm {}^{2}  {s}^{ - 2}  )  \\  \\   : \implies \rm \:KE = 7728.4  \times  {10}^{ - 2} \:  \: J \\  \\   : \implies \rm \: KE = 77.284 \: J

∴ The kinetic energy stored in the bullet of mass 50 g and velocity 200 m/s is 77.284 J

Answered by abdulrubfaheemi
0

Answer:

Given :

Mass of the bullet = 50 g

Velocity of the bullet = 200 km/h

To find :

Kinetic energy stored in the bullet

Solution :

Kinetic energy of a body is given by ,

\dag \boxed {\rm{KE = \: \frac{1}{2}m {v}^{2} }}†

KE=

2

1

mv

2

Where ,

m is mass of the body

v is velocity of the body

The relation between kg and g is

\begin{gathered} : \implies {\rm{1kg= 10000 \: g}} \\ \\ : \implies \rm \: 1g = \frac{1}{1000} \: kg \\ \\ : \implies \boxed {\rm{ 1g = 10 {}^{ - 3} \: kg }}\end{gathered}

:⟹1kg=10000g

:⟹1g=

1000

1

kg

:⟹

1g=10

−3

kg

Then , 50 g = 50 × 10⁻³ kg = 5 × 10⁻² kg

Now , the relation between m/s and km/hr is ,

\boxed {\rm{1km. {hr}^{ - 1} = 0.278 \: m {s}^{ - 1} }}

1km.hr

−1

=0.278ms

−1

Then , 200 km/hr = 200 × 0.278 m/s = 55.6 m/s

We have ,

m = 50 g = 5 × 10⁻² kg

v = 200 km/hr = 55.6 m/s

\begin{gathered} : \implies \rm \: KE = \dfrac{1}{2}(5 \times {10}^{ - 2} \: kg)(55.6 \: m {s}^{ - 1} ) {}^{2} \\ \\ : \implies \rm \: KE = \frac{1}{2} (5\times {10}^{ - 2} \: kg)({ 3091.36} \: m {}^{2} {s}^{ - 2} ) \\ \\ : \implies \rm \: KE = \frac{1}{2} (15456.8 \times {10}^{ - 2} \: kgm {}^{2} {s}^{ - 2} ) \\ \\ : \implies \rm \:KE = 7728.4 \times {10}^{ - 2} \: \: J \\ \\ : \implies \rm \: KE = 77.284 \: J \end{gathered}

:⟹KE=

2

1

(5×10

−2

kg)(55.6ms

−1

)

2

:⟹KE=

2

1

(5×10

−2

kg)(3091.36m

2

s

−2

)

:⟹KE=

2

1

(15456.8×10

−2

kgm

2

s

−2

)

:⟹KE=7728.4×10

−2

J

:⟹KE=77.284J

∴ The kinetic energy stored in the bullet of mass 50 g and velocity 200 m/s is 77.284 J

Similar questions