If A = [ᶜᵒˢₛᵢₙ ⁻ˢᶦⁿ cₒₛ], then the matrix A⁻⁵⁰ when , θ = π/12, is equal to [JEE Main 2019]
Answers
If A = [ᶜᵒˢₛᵢₙ ⁻ˢᶦⁿ cₒₛ], then the matrix A⁻⁵⁰ when , θ = π/12, is equal to
Inverse of a matrix can be found out by,
Its given that
- A =
- = = >
- = = >
- = =>
By using principle of mathematical induction this can be used for nθ
For n = 50,
Given θ = π/12
cos(50/12) = cos( 4 + /6) = cos(/6) = /2
sin(50π/12) = sin ( π/6 ) = 1/2
Therefore,
- =
- Option C is the right answer
If A = [ᶜᵒˢₛᵢₙ ⁻ˢᶦⁿ cₒₛ], then the matrix A⁻⁵⁰ when , θ = π/12, is equal to \begin{lgathered}\left[\begin{array}{cc}\sqrt{3}/2&1/2& \\-1/2&\sqrt{3} /2\end{array}\right]\end{lgathered}
[
3
/2
−1/2
1/2
3
/2
]
Inverse of a matrix can be found out by,
A^{-1}=\frac{1}{\left | A \right |}\cdot adjAA
−1
=
∣A∣
1
⋅adjA
Its given that
A = \begin{lgathered}\begin{bmatrix} \cos \left ( \theta \right ) & -\sin \left ( \theta \right )\\ \sin \left ( \theta \right )& \cos \left ( \theta \right ) \end{bmatrix}\end{lgathered}
[
cos(θ)
sin(θ)
−sin(θ)
cos(θ)
]
\begin{lgathered}A^{-1}=\frac{1}{\left | A \right |}adjA=\frac{1}{1}\begin{bmatrix} \cos \theta & \sin \theta \\ -\sin \theta & \cos \theta \end{bmatrix}\end{lgathered}
A
−1
=
∣A∣
1
adjA=
1
1
[
cosθ
−sinθ
sinθ
cosθ
]
\begin{lgathered}\left ( A^{-1} \right )^{2}=\begin{bmatrix} \cos\theta & \sin \theta \\ - \sin \theta & \cos\theta \end{bmatrix}\begin{bmatrix} \cos \theta & \sin \theta \\ -\sin \theta & \cos \theta \end{bmatrix}\end{lgathered}
(A
−1
)
2
=[
cosθ
−sinθ
sinθ
cosθ
][
cosθ
−sinθ
sinθ
cosθ
]
= = >
\begin{lgathered}A^{-2} = \begin{bmatrix} \cos \left ( 2\theta \right ) &\sin \left ( 2\theta \right ) \\ -\sin \left ( 2\theta \right ) & \cos \left ( 2\theta \right ) \end{bmatrix}\end{lgathered}
A
−2
=[
cos(2θ)
−sin(2θ)
sin(2θ)
cos(2θ)
]
= = >
\begin{lgathered}\left ( A^{-1} \right )^{3}=\begin{bmatrix} \cos \left (3 \theta \right ) & \sin \left (3 \theta \right )\\ - \sin \left ( 3\theta \right )&\cos \left ( 3\theta \right ) \end{bmatrix}\end{lgathered}
(A
−1
)
3
=[
cos(3θ)
−sin(3θ)
sin(3θ)
cos(3θ)
]
= =>
By using principle of mathematical induction this can be used for nθ
For n = 50,
\begin{lgathered}\left ( A^{-1} \right )^{50}=\begin{bmatrix} \cos \left (50 \theta \right ) & \sin \left (50 \theta \right )\\ - \sin \left ( 50\theta \right )&\cos \left ( 50\theta \right ) \end{bmatrix}\end{lgathered}
(A
−1
)
50
=[
cos(50θ)
−sin(50θ)
sin(50θ)
cos(50θ)
]
Given θ = π/12
cos(50\piπ /12) = cos( 4\piπ + \piπ /6) = cos(\piπ /6) = \sqrt{3}
3
/2
sin(50π/12) = sin ( π/6 ) = 1/2
Therefore,
A^{-50}A
−50
= \begin{lgathered}\left[\begin{array}{cc}\sqrt{3}/2&1/2& \\-1/2&\sqrt{3} /2\end{array}\right]\end{lgathered}
[
3
/2
−1/2
1/2
3
/2
]
Option C is the right answer