If (A cap + B cap = C cap)then find the value of (A cap -B cap=?)
Answers
value of |A - B| = √{2(A² + B²) - C²}
it is given that ( A + B ) = C
we have to find the value of |(A - B)|
A + B = C
⇒|A + B| = |C|
⇒√{A² + B² + 2ABcosθ} = |C|
⇒A² + B² + 2ABcosθ = C²
⇒cosθ = (C² - A² - B²)/2AB.........(1)
|A - B| = √{A² + B² - 2ABcosθ}
= √{A² + B² - 2AB × (C² - A² - B²)/2AB}
= √{A² + B² - (C² - A² - B²)}
= √{2(A² + B²) - C²}
therefore, |A - B| = √{2(A² + B²) - C²}
also read similar questions : â cap + b cap + c cap = 0 . find â×b + b×c + c×â = ?
https://brainly.in/question/156150
Find out correct option if acap + 2b cap and 5a cap - 4 b cap atare perpendicular find angle between a cap and b cap.
A....
https://brainly.in/question/11544379
Answer:
|A - B| = √{2(A² + B²) - C²}
Step-by-step explanation:
value of |A - B| = √{2(A² + B²) - C²}
it is given that ( A + B ) = C
we have to find the value of |(A - B)|
A + B = C
⇒|A + B| = |C|
⇒√{A² + B² + 2ABcos0} = |C|
⇒A² + B² + 2AB cos0 = C²
⇒cosθ = (C² - A² - B²)/2AB (1)
|A - B| = √{A² + B² - 2AB cos0}
= √{A² + B² - 2AB × (C² - A² - B²)/2AB}
= √{A² + B² - (C² - A² - B²)}
= √{2(A² + B²) - C²}
therefore, |A - B| = √{2(A² + B²) - C²}