Physics, asked by IAKSinghRajput, 11 hours ago

if a car accelerates uniformly from 18 km/hr to 36 km/hr in 5 seconds.

Answers

Answered by Itzheartcracer
3

Given :-

If a car accelerates uniformly from 18 km/hr to 36 km/hr in 5 seconds

To Find :-

Acceleration

Solution :-

1 km/h = 5/18 m/s

18 km/h = 18 × 5/18

18 km/h = 5 m/s

36 km/h = 36 × 5/18

36 km/h = 2 × 5

36 km/h = 10 m/s

Now,

Acceleration = Final velocity - Initial velocity/Time

a = 10 - 5/5

a = 5/5

a = 1/1

a = 1

Therefore

Acceleration is 1 m/s²

Answered by XxMrZombiexX
57

Given that

  • Initial velocity = u = 18 km/m
  • Final velocity = v = 36 km/m
  • Time taken = t = 5 seconds

To find

  • Accelerates of car
  • Distance travelled

Solution

Given Parameters : - Time taken by car be 5 sec and Initial velocity = 18km/hours &Final velocity = 36km/hours. we have to find Accelerates

converting and final velocity in m/s

 \underline{ \bf \red{ \: conversion \: from \: k m/s \: velocity}}

 \tt\purple \longrightarrow 1km = 1000 \\  \\  \\  \tt\purple \longrightarrow 1 \: hours \:  = 60 \: min \:  = 3600 \: sec

\tt\purple  \therefore  \:  \:  \dfrac{1km}{hours}  =  \dfrac{10 \cancel{00 }\:m}{36 \cancel{00} \: s}  \\  \\  \\ \tt\purple  \therefore  \:  \:  \:  \frac{1km}{hours}  = \cancel  \frac{10}{36}  \\  \\  \\  \tt\purple  \therefore  \: \:  \:  1km/h  = \:  \frac{5}{18}

________________________

\bf Initial  \: velocity _{(u)} = 18km/hours \\  \\  \\  \red\longrightarrow \cancel{18} \times  \frac{5}{ \cancel{18}}  \\  \\  \\   \red\longrightarrow5 \sf \: m/s

\bf Final \:  velocity _{(v)}=36 km/hours \\  \\  \\  \red\longrightarrow \cancel{36 }\times  \frac{5}{ \cancel{18} } \\  \\  \\ \red\longrightarrow \cancel6 \times  \frac{5}{ \cancel3}  \\  \\  \\ \red\longrightarrow2 \times 5 \\  \\  \\ \red\longrightarrow10 \sf \: m/s

____________________________

we need to calculate Acceleration and distance traveled

we know that

  \qquad \qquad\boxed{\underline{\frak{ Acceleration_{(a) }=  \frac{(v - u)}{t} }}}

where

  • v = Final velocity
  • u = Initial velocity
  • t = time

Substituting the given values in the above equation we get

 \sf \: \blue\longrightarrow \: a \:  =  \dfrac{(10 - 5)}{5}  \\  \\  \\ \blue\longrightarrow \sf \: a =   \cancel\dfrac{ 5}{5}  \\  \\  \\ \blue\longrightarrow \sf \: Acceleration  =   1m/s²

____________________________

we know that distance traveled is calculated by the formula

 \qquad \qquad\boxed{\underline{\frak{Distance_{ (travelled )}=ut + \bigg ( \frac{1}{2} \bigg  )a \times  t^2}}}

Substituting the given value in the above equation we get

\tt\blue\longrightarrow \: s = 5 \times 5 +  \bigg( \dfrac{1}{2}  \bigg) \times 1 \times  {(5)}^{2}  \\  \\  \\ \tt\blue\longrightarrow \: s = 25 +  \bigg( \dfrac{1}{2}  \bigg) \times 5 \times 5 \\  \\  \\ \tt\blue\longrightarrow \: s = 25 +  \dfrac{1}{ \cancel2}  \times  \cancel{25} \\  \\  \\ \tt\blue\longrightarrow \: s = 25 + 12.5 \\  \\  \\ \tt\blue\longrightarrow \: s = 37.5 \: m

Hence Acceleration = 1 m/s² and Distance travelled = s = 37.5 m

Similar questions