Math, asked by kom45, 1 year ago

If a coa teta - b sin teta = c , prove that ( a sin teta + b coa teta ) = +root a² + b² - c² , -root a²+b²-c².

Answers

Answered by Panzer786
1
Hey !!


Given : a cos ¢ - b sin ¢ = C


Now,


( a cos ¢ - b sin ¢ )² + ( a sin ¢ + b cos¢)²


=> a² ( cos²¢ + sin²¢ ) + b² ( sin²¢ + cos² ¢ ) = ( a² + b² ).



Thus,


( a cos ¢ - b sin¢)² + ( a sin¢ + b cos¢)² = ( a²+b²).



=> C² + ( a sin ¢ + b cos ¢ )² = ( a² + b²).


=> ( a sin ¢ + b cos ¢ )² = ( a² + b² + c²)



=> ( a sin¢ + b cos ¢ ) = +- √ a²+ b² - c²



Hence,


( a sin ¢ + b cos ¢ ) = +- ✓ a² + b² - c²
Answered by figuredfu
0
xyydydttstdyxycycyxydydydysyd
Similar questions