If a coa teta - b sin teta = c , prove that ( a sin teta + b coa teta ) = +root a² + b² - c² , -root a²+b²-c².
Answers
Answered by
1
Hey !!
Given : a cos ¢ - b sin ¢ = C
Now,
( a cos ¢ - b sin ¢ )² + ( a sin ¢ + b cos¢)²
=> a² ( cos²¢ + sin²¢ ) + b² ( sin²¢ + cos² ¢ ) = ( a² + b² ).
Thus,
( a cos ¢ - b sin¢)² + ( a sin¢ + b cos¢)² = ( a²+b²).
=> C² + ( a sin ¢ + b cos ¢ )² = ( a² + b²).
=> ( a sin ¢ + b cos ¢ )² = ( a² + b² + c²)
=> ( a sin¢ + b cos ¢ ) = +- √ a²+ b² - c²
Hence,
( a sin ¢ + b cos ¢ ) = +- ✓ a² + b² - c²
Given : a cos ¢ - b sin ¢ = C
Now,
( a cos ¢ - b sin ¢ )² + ( a sin ¢ + b cos¢)²
=> a² ( cos²¢ + sin²¢ ) + b² ( sin²¢ + cos² ¢ ) = ( a² + b² ).
Thus,
( a cos ¢ - b sin¢)² + ( a sin¢ + b cos¢)² = ( a²+b²).
=> C² + ( a sin ¢ + b cos ¢ )² = ( a² + b²).
=> ( a sin ¢ + b cos ¢ )² = ( a² + b² + c²)
=> ( a sin¢ + b cos ¢ ) = +- √ a²+ b² - c²
Hence,
( a sin ¢ + b cos ¢ ) = +- ✓ a² + b² - c²
Answered by
0
xyydydttstdyxycycyxydydydysyd
Similar questions
Math,
7 months ago
Science,
7 months ago
Physics,
7 months ago
Computer Science,
1 year ago
Math,
1 year ago