Math, asked by rawatarchita26, 9 months ago

If a cos 0 = x and b cot 0 = y, show that
a ^{2}\div x ^{2} - b {}^{2} \div y {}^{2} = 1

Answers

Answered by Kaushikkalesh
0

Answer:

a cos A = x (or) \frac{a}{x} = \frac{1}{cos A} (or)  \frac{a}{x} = sec A

b cot A = y (or) \frac{b}{y} = \frac{1}{cot A}  (or)  \frac{b}{y} = tan A

Therefore,  

\frac{a^{2} }{x^{2} } - \frac{b^{2} }{y^{2}} = 1

[\frac{a}{x}] ^{2} - [\frac{b}{y}] ^{2} = 1

sec^{2} A - tan^{2} A = 1

[LHS = RHS]

HENCE PROVED

Hope it helped...

Do mark it as 'Brainliest'

 

Similar questions