Math, asked by Itzheartcracer, 2 months ago

If a cos 2θ + b sin 2θ = c has α and β as its roots, then prove that tan α + tan β = 2b/(a + c).
Note
Do not copy as it is easy

Answers

Answered by Abhisheshlove
4

Answer:

Step-by-step explanation:

Answer: (2) 2b/(c + a)

Solution:

Given,

a cos 2θ + b sin 2θ = c….(i)

a[(1 – tan2θ)/(1 + tan2θ)] + b[2 tan θ/(1 + tan2θ)] = c

a(1 – tan2θ) + 2b tan θ = c(1 + tan2θ)

c + c tan2θ – a + a tan2θ – 2b tan θ = 0

(c + a)tan2θ – 2b tan θ + (c – a) = 0….(ii)

Given that α and β are the roots of equation (i).

Thus, tan α and tan β are the roots of equation (ii) as it is a quadratic equation in tan θ.

Sum of the roots of equation (ii),

tan α + tan β = -(-2b)/(c + a) = 2b/(c + a)

the sum of the lower limits  of the median and modal class is

MARK ME AS BRAINLIEST!!!

HAPPY TO HELP(●‿●)

FOLLOW

Answered by mathdude500
6

\large\underline{\sf{Solution-}}

Given that,

\rm :\longmapsto\: \alpha , \beta  \: are \: roots \: of \: acos2 \theta \: +  \:  bsin2\theta  = c

Now, we have the equation,

\rm :\longmapsto\:  \: acos2 \theta \: +  \:  bsin2\theta  = c

We know that,

\underbrace{\boxed{ \tt{ sin2x\: =  \:  \frac{2tanx}{1 +  {tan}^{2}x }}}}

and

\underbrace{\boxed{ \tt{ cos2x\: =  \:  \frac{1 -  {tan}^{2}x }{1 +  {tan}^{2}x }}}}

So,

On substituting the values, in given equation, we get

\rm :\longmapsto\:a\bigg(\dfrac{1 -  {tan}^{2} \theta }{1 +  {tan}^{2} \theta } \bigg)  + b\bigg(\dfrac{2tan\theta }{1 +  {tan}^{2} \theta } \bigg) = c

On taking LCM, we get

\rm :\longmapsto\:a(1 -  {tan}^{2}\theta ) + 2 b \: tan\theta  = c(1 +  {tan}^{2}\theta )

\rm :\longmapsto\:a -  a{tan}^{2}\theta + 2 b \: tan\theta  = c +  c{tan}^{2}\theta

can be rewritten as

\rm :\longmapsto\:a {tan}^{2}\theta  +  c {tan}^{2}\theta  - 2 btan\theta  - a + c = 0

\rm :\longmapsto\:(a + c) {tan}^{2}\theta  - 2 btan\theta  + (c - a) = 0

Now, its a quadratic in tan,

So,

\rm :\implies\:Roots \: of \: the \: equation \: are \: tan \alpha  \: and \: tan \beta

We know that,

\boxed{\red{\sf Sum\ of\ the\ zeroes=\frac{-coefficient\ of\ x}{coefficient\ of\ x^{2}}}}

Thus,

\rm :\longmapsto\: tan \alpha  + tan \beta \:  =  \:  -  \: \dfrac{ (- 2b)}{a + c}

\bf\implies \:\: tan \alpha  + tan \beta \:  =  \:    \: \dfrac{2b}{ \:  \: a + c \:  \: }

Hence, Proved

Additional Information :-

\boxed{ \sf{ \:sin2x = 2sinxcosx}}

\boxed{ \sf{ \:cos2x = 1 -  {2sin}^{2}x}}

\boxed{ \sf{ \:cos2x =  {2cos}^{2}x - 1}}

\boxed{ \sf{ \:cos2x =  {cos}^{2}x -  {sin}^{2}x}}

\boxed{ \sf{ \:tan2x =  \frac{2tanx}{1 -  {tan}^{2} x}}}

\boxed{ \sf{ \:sin3x = 3sinx -  {4sin}^{3}x}}

\boxed{ \sf{ \:cos3x =  {4cos}^{3}x - 3cosx}}

Similar questions