If A = cos^2θ + sin^4θ, then prove that for all values of θ, 3/4≤A≤1.
Answers
Answered by
2
Given,
A=cos^2θ+sin^4θ
⟹A=1−sin^2θ+sin^4θ
⟹A=1+(sin^4θ−2⋅sin^2θ⋅1/2+1/4)−1/4
⟹A=(sinθ−1/2)^2+3/4
We know,
0≤sin^2θ≤1,∀θ∈R.
∴0≤(sin2θ−1/2)2≤1/4
⟹0+3/4≤(sinθ−1/2)2+3/4≤14+3/4
∴3/4≤A≤1.(∀θ∈R)†
Similar questions