Math, asked by asrithamantri1217, 11 months ago

If a/cos A=b/cod B=c/cosC prove that triangle ABC is equilateral triangle

Answers

Answered by Anonymous
1

 \huge \red{ \underline{question}}

In ΔABC, Given (a/cosA)=(b/cosB)=(c/cosC) . Prove that ΔABC is an equilateral triangle.

 \huge \red{ \underline{proof}} \implies

Step- by -step explanation:-

  a.t.q.  \:   \\ \:  \: \frac{a}{cos \: A}  =  \frac{b}{cos \: B}  =  \frac{c}{cos \: C}........(1)  \\  \\ use \: sine \:rule \\  \\  \implies \:  \frac{a}{sin \: A}  =  \frac{b}{sin \: B}  =  \frac{c}{sin \: C}  \:  \\  \\ therefore \: reverse \: this \\  \\  \implies \:  \frac{sin \: A}{a}  =  \frac{sin \: B}{b}  =  \frac{sin \: C}{c} .......(2) \\  \\ now \: multiplying \: equals \: by \: rquals \: from \:  \\ (1) \: and \: (2) \\  \\ now \: we \: have \\  \\   \implies \:  \bigg( \frac{sin \: A}{a}  \bigg) \bigg( \frac{a}{cos \: A}  \bigg) =  \bigg( \frac{sin \: B}{b}  \bigg) \bigg( \frac{b}{cos \: B}  \bigg) =  \bigg( \frac{sin \: C}{c}  \bigg) \bigg( \frac{c}{cos \: C}  \bigg) \\  \\  \implies \:  \bigg( \frac{sin \: A}{cos \: A} \bigg) =  \bigg( \frac{sin \: B}{cos \: B}  \bigg) =  \bigg( \frac{sin \: C}{cos \: C}   \bigg) \\  \\  \implies \: tan \: A \:  = tan \: B \:  = tan \: C \\  \\  \implies \: A ,\: B, \: and \: C \: are \: angle \: of \: a \: triangle \: which \: are\\ \: less \: then \: 180 \degree

A= B = C

thus, ∆ABC is a equilateral triangle.

Hence proved.

Similar questions