Math, asked by likhitaishu3, 10 months ago

If A=[cos alpha sin alpha]
[-sin alpha cos alpha] , A–¹= A' , then find alpha

Answers

Answered by renin34
0

Answer:

Solution: We have, <br> COs a sin a A sin a cos a and COs a – sin a A' sin a cos a <br> Also, A-1 = A '<br> 1 » AA AA <br> COs a sin a sin a cos a <br> cos? a + sin? a 0 sin? a <br> By using equality of matrices, we get <br> cos a + sin a = 1 <br> which is true for all real values of ||

Answered by amitnrw
3

Given :    A =  \left[\begin{array}{ccc}Cos \alpha&amp;Sin \alpha  \\-Sin \alpha&amp;Cos \alpha  \end{array}\right]    A=[cos alpha sin alpha]

                                                            [-sin alpha cos alpha]

To find :  A⁻¹   = A  , alpha

Solution:

A =  \left[\begin{array}{ccc}Cos \alpha&amp;Sin \alpha  \\-Sin \alpha&amp;Cos \alpha  \end{array}\right]

A =  \left[\begin{array}{ccc}Cos \alpha&Sin \alpha  \\-Sin \alpha&Cos \alpha  \end{array}\right]

A' =  \left[\begin{array}{ccc}Cos \alpha&amp;-Sin \alpha  \\Sin \alpha&amp;Cos \alpha  \end{array}\right]

A  = IA

\left[\begin{array}{ccc}Cos \alpha&amp;Sin \alpha  \\-Sin \alpha&amp;Cos \alpha  \end{array}\right]   = \left[\begin{array}{ccc}1&amp;0  \\0&amp;1  \end{array}\right]  \left[\begin{array}{ccc}Cos \alpha&amp;Sin \alpha  \\-Sin \alpha&amp;Cos \alpha  \end{array}\right]

\left[\begin{array}{ccc}Cos \alpha&Sin \alpha  \\-Sin \alpha&Cos \alpha  \end{array}\right]   = \left[\begin{array}{ccc}1&0  \\0&1  \end{array}\right]  \left[\begin{array}{ccc}Cos \alpha&Sin \alpha  \\-Sin \alpha&Cos \alpha  \end{array}\right]

R₁  →  R₁Cosα - SinαR₂

1               0                     Cosα    -Sinα

-Sinα    Cosα                    0        1

R₂  →   R₂+ R₁Sinα

1               0                     Cosα               -Sinα

0          Cosα                    CosαSinα         1 - Sin²α

1               0                     Cosα               -Sinα

0          Cosα                    CosαSinα        Cos²α

R₂  →   R₂ / Cosα    

1               0                       Cosα               -Sinα

0              1                        Sinα                Cosα

I = A⁻¹A

=> A⁻¹   =   \left[\begin{array}{ccc}Cos \alpha&amp;-Sin \alpha  \\Sin \alpha&amp;Cos \alpha  \end{array}\right]

A' =  \left[\begin{array}{ccc}Cos \alpha&amp;-Sin \alpha  \\Sin \alpha&amp;Cos \alpha  \end{array}\right]

A⁻¹   = A

Hence its true for all real Value of α

Another method

A⁻¹   = A'  given

AA⁻¹ = I

=> AA'  = I

=> A =  \left[\begin{array}{ccc}Cos \alpha&amp;Sin \alpha  \\-Sin \alpha&amp;Cos \alpha  \end{array}\right] * A' =  \left[\begin{array}{ccc}Cos \alpha&amp;-Sin \alpha  \\Sin \alpha&amp;Cos \alpha  \end{array}\right]  =   I

=> Cos²α + Sin²α                 -CosαSinα + SinαCosα       =      1         0

   -SinαCosα + CosαSinα    Sin²α + Cos²α                             0        1

=>      1             0          =           1          0

         0            1                       0          1

independent of alpha α

Hence true for all real value of α

Learn more:

यदि A कोटि दो का व्युत्क्रमीय आव्यूह हे तो det (A-1 ...

https://brainly.in/question/16387229

If a matrix A is such that 4A3+2A2+7A+I=0, then A-1 equals - Brainly.in

https://brainly.in/question/17636026

Similar questions