If a cosƟ + b sinƟ = and a sinƟ – b cosƟ =y, Prove that a²+b² = ²+² evantell me how to mark this anwr as brainiest i am not able to et the option for it whoever will answer be marksd as braienst
Answers
Answered by
18
Given that:
a cosƟ + b sinƟ = x
a sinƟ - b cosƟ = y
Squaring on both sides:
a^2 cos^2 Ɵ + b^2 sin^2 Ɵ + 2ab sinƟ cosƟ = x^2
a^2 sin^2 Ɵ + b^2 cos^2 Ɵ - 2ab sinƟ cosƟ = y^2
Find the value of 2ab sinƟ cosƟ from both equations:
2ab sinƟ cosƟ = x^2 - a^2 cos^2 Ɵ - b^2 sin^2 Ɵ
2ab sinƟ cosƟ = a^2 sin^2 Ɵ + b^2 cos^2 Ɵ - y^2
Equate the equations:
x^2 - a^2 cos^2 Ɵ - b^2 sin^2 Ɵ = a^2 sin^2 Ɵ + b^2 cos^2 Ɵ - y^2
Solve it further:
x^2 + y^2 = a^2 sin^2 Ɵ + b^2 cos^2 Ɵ + a^2 cos^2 Ɵ + b^2 sin^2 Ɵ
x^2 + y^2 = a^2(sin^2 Ɵ + cos^2 Ɵ) + b^2 (cos^2 Ɵ + sin^2 Ɵ)
x^2 + y^2 = a^2 + b^2
hence proved.
Identities used:
- (a+b)^2 = a^2 + b^2 + 2ab
- (a-b)^2 = a^2 + b^2 - 2ab
- sin^2 Ɵ + cos^2 Ɵ = 1
Answered by
28
Correct Question:
If x = a cos Θ + b sin Θ and y = a sin Θ - b cos Θ , prove that x² +y² = a²+ b².
Your Answer:
Given:-
- x = a cos Θ + b sin Θ
- y = a sin Θ - b cos Θ
To Prove:-
- x² +y² = a²+ b²
Solution:-
Solving LHS
LHS= RHS
proved
Similar questions