If a cosΘ - b sinΘ = c, then a sinΘ + b cosΘ is equal to
(a) ±√a²+b²+c²
(b) ±√a²+b²-c²
(c) ±√c²-a²-b²
(d) 1/3
Answers
Step-by-step explanation:
Question:- a cosΘ - b sinΘ = c, then a sinΘ + b cosΘ is equal to
_________
Given :-
→ a cos∅ + b sin∅ = c ...(1) .
Now,
→ ( a cos∅ - b sin∅ )² + ( a sin∅ + b cos∅ )² .
= a²cos²∅ + b²sin²∅ - 2a sin∅ b cos∅ + a²cos²∅ + b²sin²∅ + 2a sin∅ b cos∅ .
= a²sin²∅ + a²cos²∅ + b²cos²∅ + b²sin²∅ .
= a²( sin²∅ + cos²∅ ) + b²( cos²∅ + sin²∅ ) .
= a² + b² .[ ∵ sin²∅ + cos²∅ = 1 ] .
Thus, ( a cos∅ - b sin∅ )² + ( a sin∅ + b cos∅ )² = ( a² + b² ) .
⇒ c² + ( a sin∅ + b cos∅ )² = ( a² + b² ) .
⇒ ( a sin∅ - b cos∅ )² = ( a² + b² - c² ) .
⇒ ( a sin∅ - b cos∅ ) = ±√( a² + b² - c² ) .
hope this helps you ☺️
Answer:
Correct option is
A
±
a
2
+b
2
+c
2
Given, a cos θ - b sin θ = c
Squaring both sides,
a² cos² θ + b² sin² θ - 2ab sin θ cos θ = c²
∴ a² ( 1 - sin² θ ) + b² ( 1 - cos² θ ) - 2ab sin θ cos θ = c²
∴ a² - a² sin² θ + b² - b² cos² θ - 2ab sin θ cos θ = c²
∴ a² + b² - c² = a² sin² θ + b² cos² θ + 2ab sin θ cos θ
∴ ( √(a²+b²-c²) )² = ( a sin θ + b cos θ )²
∴ a sin θ + b cos θ = ± √(a²+b²-c²)