If a cos θ – b sinθ = x and a sinθ + b cosθ = y that a2 + b2 = x2 + y2.
Answers
Answered by
4
Step-by-step explanation:
given,
x=acosθ-bsinθ
y=asinθ+bcosθ
from RHS
x²+y²=(acosθ-bsinθ)²+(asinθ+bcosθ)²
x²+y²=a²cos²θ+b²sin²θ-2absinθcosθ +a²sin²θ+b²sin²θ+2absinθcosθ
x²+y²=a²cos²θ+a²sin²θ+b²sin²θ+b²cos²θ
x²+y²=a²(cos²θ+sin²θ)+b²(sin²θ+cos²θ)
x²+y²=a²+b²
Attachments:
Similar questions