if a cos∅- bcos∅ =c then a sin ∅ + b cos∅ is equal to?
Answers
Answer:
± √( a² + b² - c² )
Step-by-step explanation:
Given :
a cos ∅ - b cos ∅ = c
Squaring on both sides
⇒ ( a cos ∅ - b sin ∅ )² = c²
Using algebraic identity ( x - y )² = x² + y² - 2xy
⇒ ( a cos ∅ )² + ( b sin ∅ )² - 2absin ∅.cos ∅ = c²
⇒ a²cos² ∅ + b²sin² ∅ - 2ab. sin ∅.cos ∅ = c²
Using trigonometric identity sin² ∅ = 1 - cos² ∅ and cos² ∅ = 1 - sin² ∅
⇒ a² ( 1 - sin² ∅ ) + b² ( 1 - cos² ∅ ) - 2ab. sin ∅. cos ∅ = c²
⇒ a² - a²sin² ∅ + b² - b²cos² ∅ - 2ab. sin ∅.cos ∅ = c²
⇒ a² + b² - c² = a²sin² ∅ + b²cos² ∅ + 2ab. sin ∅.cos ∅
⇒ a²sin² ∅ + b²cos² ∅ + 2ab. sin ∅.cos ∅ = a² + b² - c²
⇒ ( asin ∅ )² + ( bcos ∅ )² + 2ab. sin ∅.cos ∅ = a² + b² - c²
Since x² + y² + 2xy = ( x + y )²
⇒ ( asin ∅ + bcos ∅ )² = a² + b² - c²
Taking square root on both sides
⇒ asin ∅ + bcos ∅ = ± √( a² + b² - c² )