Math, asked by ankitesh55, 5 hours ago

If a cos-bsin=c then prove that asin+bcos=/a²+b²-c²​

Attachments:

Answers

Answered by Ataraxia
42

Given :-

 \sf a \cos \theta - b \sin \theta = c

To Prove :-

 \sf  a \sin \theta + b \cos \theta =  \pm \sqrt{ {a}^{2}  +  {b}^{2} -  {c}^{2}  }

Solution :-

 \sf a \cos \theta - b \sin \theta = c

By squaring both sides, we get :-

:  \implies \sf  {a}^{2}  \cos ^{2}  \theta  +   {b}^{2}  { \sin}^{2}  \theta  - 2ab \cos \theta \sin \theta=  {c}^{2}

 \bullet \bf \:  { \cos}^{2}  \theta = 1 -  { \sin}^{2}  \theta

 \bullet  \bf \:  { \sin}^{2}  = 1 -  { \cos}^{2}  \theta

 :  \implies \sf  {a}^{2} (1 -  { \sin}^{2}  \theta) +  {b}^{2} (1 -  { \cos}^{2} \theta) - 2ab \cos \theta \sin \theta =  {c}^{2}

: \implies  \sf {a}^{2}  -  {a}^{2}  \sin ^{2}  \theta +  {b}^{2}  -  {b}^{2}  \cos ^{2}  \theta - 2ab \cos \theta \sin \theta =  {c}^{2}

:  \implies \sf   {a}^{2}   {sin}^{2} \theta +  {b}^{2}   { \cos}^{2}  \theta + 2ab \cos \theta \sin \theta =  {a}^{2}  +  {b}^{2}  -  {c}^{2}

 :  \implies \sf  (a \sin \theta + b \cos \theta) ^{2}  =  {a}^{2}  +  {b}^{2}  -  {c}^{2}

 :  \implies \sf  a \sin \theta + b \cos \theta =  \pm \sqrt{ {a}^{2} +  {b}^{2}   -  {c}^{2} }

Hence proved.

Answered by kamalhajare543
15

Answer:

Given :-

\sf a \cos \theta - b \sin \theta

To Prove :-

 \boxed{\sf a \sin \theta + b \cos \theta = \pm \sqrt{ {a}^{2} + {b}^{2} - {c}^{2} }}

Solution :-

 \sf a \cos \theta - b \sin \theta

By squaring both sides, we get :-

 \boxed{\implies \sf {a}^{2} \cos ^{2} \theta + {b}^{2} { \sin}^{2} \theta - 2ab \cos \theta \sin \theta= {c}^{2}:}

\bullet \bf \: { \cos}^{2} \theta = 1 - { \sin}^{2} \theta∙

\bullet \bf \: { \sin}^{2} = 1 - { \cos}^{2} \theta

\boxed { \implies \sf {a}^{2} (1 - { \sin}^{2} \theta) + {b}^{2} (1 - { \cos}^{2} \theta) - 2ab \cos \theta \sin \theta = {c}^{2}:}

 \boxed{\implies \sf {a}^{2} - {a}^{2} \sin ^{2} \theta + {b}^{2} - {b}^{2} \cos ^{2} \theta - 2ab \cos \theta \sin \theta = {c}^{2}:}

\boxed {\implies \sf {a}^{2} {sin}^{2} \theta + {b}^{2} { \cos}^{2} \theta + 2ab \cos \theta \sin \theta = {a}^{2} + {b}^{2} - {c}^{2}:}

 \boxed{\implies \sf (a \sin \theta + b \cos \theta) ^{2} = {a}^{2} + {b}^{2} - {c}^{2}:}

 \boxed{\implies \sf a \sin \theta + b \cos \theta = \pm \sqrt{{a}^{2} + {b}^{2} -{c}^{2} }}

\pink{Hence \:  proved.}

Similar questions