If a cos theta - b sibtheta = x and a sin theta + b cos theta = y, then prove that a square + b square = x square + y square
Answers
Answered by
106
acos∅ -bsin∅ = x and asin∅+bcos∅ = y
on squaring both the equations
x² = a²cos²∅ + b²sin²∅ - 2abcos∅sin∅
y² = a²sin²∅ + b²cos²∅ + 2abcos∅sin∅
on adding x² + y²
x²+y² = a²( sin²∅ + cos²∅) + b²(sin²∅ + cos²∅) - 2abcos∅sin∅ + 2abcos∅sin∅
x²+y² = a²+b²
on squaring both the equations
x² = a²cos²∅ + b²sin²∅ - 2abcos∅sin∅
y² = a²sin²∅ + b²cos²∅ + 2abcos∅sin∅
on adding x² + y²
x²+y² = a²( sin²∅ + cos²∅) + b²(sin²∅ + cos²∅) - 2abcos∅sin∅ + 2abcos∅sin∅
x²+y² = a²+b²
Answered by
7
Answer:
Here is your answer and PLZZ mark me as brainleist
Attachments:
Similar questions