If a cos theta + b sin theta = 4 and a sin theta -b cos theta = 3, then
a^2+ b^2 is equal to
Answers
Answered by
3
Answer:
a²+b² = 25
Step-by-step explanation:
Given: acosβ+bsinβ = 4 ---------1
Also, asinβ-bcosβ = 3 ---------2
On squaring and adding equation 1 and 2, we get
(acosβ+bsinβ)²+(asinβ-bcosβ)² = 4²+3²
a²cos²β + b²sin²β + 2absinβcosβ + a²sin²β + b²cos²β - 2absinβcosβ = 16+9
or a²cos²β + a²sin²β + b²sin²β + b²cos²β = 25
or a²(cos²β + sin²β) + b²(sin²β + cos²β) = 25
or a²+b² = 25
Please mark it as Brainliest.
Similar questions