Math, asked by goledishreya1756, 2 months ago

If a cos theta + b sin theta= c then a sin theta+ b cos theta= ? ​

Answers

Answered by mathdude500
5

Appropriate Question :-

\rm :\longmapsto\:If \: acos\theta  + bsin\theta  = c \: then \: asin\theta  - bcos\theta  =

\large\underline{\sf{Solution-}}

➢ Given that

\rm :\longmapsto\:a \: cos\theta  + b \: sin\theta  = c

On squaring both sides, we get

\rm :\longmapsto\:(a \: cos\theta  + b \: sin\theta)^{2}   = c ^{2}

We know,

\underbrace{\boxed{\bf{  {(x + y)}^{2} =  {x}^{2} +  {y}^{2} + 2xy}}}

So, using this, we have

\rm :\longmapsto\: {a}^{2} {cos}^{2}\theta  +  {b}^{2} {sin}^{2}\theta  + 2absin\theta cos\theta  =  {c}^{2}

We know,

\underbrace{\boxed{\bf{  {sin}^{2}x +  {cos}^{2}x = 1}}}

So, using this

\rm :\longmapsto\: {a}^{2}(1 -  {sin}^{2}\theta)  +  {b}^{2}(1 - {cos}^{2}\theta  )+ 2absin\theta cos\theta  =  {c}^{2}

\rm :\longmapsto\: {a}^{2}-{a}^{2} {sin}^{2}\theta+{b}^{2} -  {b}^{2} {cos}^{2}\theta+ 2absin\theta cos\theta  =  {c}^{2}

\rm :\longmapsto\: -{a}^{2} {sin}^{2}\theta -  {b}^{2} {cos}^{2}\theta+ 2absin\theta cos\theta  ={c}^{2}-{a}^{2}-{b}^{2}

\rm :\longmapsto\: {a}^{2} {sin}^{2}\theta + {b}^{2} {cos}^{2}\theta -  2absin\theta cos\theta  = - {c}^{2} + {a}^{2} + {b}^{2}

We know,

\underbrace{\boxed{\bf{  {(x  -  y)}^{2} =  {x}^{2} +  {y}^{2}  -  2xy}}}

\rm :\longmapsto\: {(asin\theta  - bcos\theta )}^{2}  =  {a}^{2} +  {b}^{2}  -  {c}^{2}

\bf :\longmapsto\:asin\theta  - bcos\theta  =  \:  \pm \:  \sqrt{ {a}^{2} +  {b}^{2}   -  {c}^{2} }

Additional Information :-

\underbrace{\boxed{\bf{  {sin}^{2}x +  {cos}^{2}x = 1}}}

\underbrace{\boxed{\bf{  {sec}^{2}x  -  {tan}^{2}x = 1}}}

\underbrace{\boxed{\bf{  {cosec}^{2}x  -  {cot}^{2}x = 1}}}

\begin{gathered}\begin{gathered}\begin{gathered}\begin{gathered}\sf Trigonometry\: Table \\ \begin{gathered}\begin{gathered}\begin{gathered}\begin{gathered}\boxed{\boxed{\begin{array}{ |c |c|c|c|c|c|} \bf\angle A & \bf{0}^{ \circ} & \bf{30}^{ \circ} & \bf{45}^{ \circ} & \bf{60}^{ \circ} & \bf{90}^{ \circ} \\ \\ \rm sin A & 0 & \dfrac{1}{2}& \dfrac{1}{ \sqrt{2} } & \dfrac{ \sqrt{3}}{2} &1 \\ \\ \rm cos \: A & 1 & \dfrac{ \sqrt{3} }{2}& \dfrac{1}{ \sqrt{2} } & \dfrac{1}{2} &0 \\ \\ \rm tan A & 0 & \dfrac{1}{ \sqrt{3} }&1 & \sqrt{3} & \rm \infty \\ \\ \rm cosec A & \rm \infty & 2& \sqrt{2} & \dfrac{2}{ \sqrt{3} } &1 \\ \\ \rm sec A & 1 & \dfrac{2}{ \sqrt{3} }& \sqrt{2} & 2 & \rm \infty \\ \\ \rm cot A & \rm \infty & \sqrt{3} & 1 & \dfrac{1}{ \sqrt{3} } & 0\end{array}}}\end{gathered}\end{gathered}\end{gathered} \end{gathered}\end{gathered}\end{gathered}\end{gathered}\end{gathered}

Similar questions